
Visualising the Conflict

Second Life Programming / Scripting

By Julio López (2011)

Contents

1. Introduction

2. Tools used

3. INCORE Island: Reception area

 3.1. Teleport pins

 3.2. Guided Tour Chairs

4. INCORE Island: Map area

 4.1. Communicating with SL

 4.2. Data Process Hub

4.3. Memorials

4.4. Info panels

1. Introduction

Part of the work outlined in the AHRC proposal relating to “Visualizing the Conflict” was to
create a Virtual Learning Environment in Second Life which would allow users to interact with
the information on physical memorials and to engage with other users. This interaction should
be based on a Google Map displaying the different memorials in its geographical context, where
users could identify and select a specific memorial in order to see its 3D virtual replica and
some additional information about it.

It was necessary then to integrate or simulate an interactive Google Map application in Second
Life. Moreover, and in order to create a complete learning experience about a specific
memorial, we were interested in having access, from the virtual world, to the information stored
on a pre-existing external database compiled by CAIN. Additionally, secondary interactive tools
were created to improve the user experience.

Two are the areas of the INCORE Island where the user can find interactive elements: the
Reception Area and the Map Area, this last one being the central part of the island.
Furthermore, small interactive pins can be found all around the island to provide instant teleport
to the Reception Area.

This paper gives a brief description of how these interactive objects were scripted in Second
Life and how this virtual environment communicates with the CAIN server.

2. Tools Used

Linden Scripting Language (LSL) is the language available in Second Life that gives behavior to
the different in-world agents, from single primitives to avatars, and was used to script the
interactions in the virtual world. One or more LSL scripts can be created inside an object, and
different methods allow a script to communicate with other scripts, with other in-world agents
and also with agents outside Second Life. Objects can also contain other objects which will be
used during the interaction.

PHP and JavaScript where used in the external server to complete the communication CAIN –
Second Life.

Figure 1: Objects and script in a prim’s inventory

3. INCORE Island: Reception Area

This is the first area the user sees when he arrives to the INCORE Island, and two different
interactive objects are available offering the user a first approach to the environment: Instant
Teleport Pins and Guided Tour Chairs.

3.1. Teleport Pins

At the Reception Area, a mini-map provides the user with a complete overview of the whole
island, with different pins pointing to the key zones.

Figure 2: Mini‐map at the Reception Area

When the camera is close enough, floating text becomes visible to tell the user what part of the
Island each pin is pointing to. By clicking on a pin, the avatar is automatically teleported to the
corresponding location of the INCORE Island.

Each teleport pin contains a script where floating text and target location are specified. To
perform the teleport functionality, the LSL function llSitTarget was used. This function is mainly
used to create chairs, benches, etc, and it sets the sit location for the prim, that is the exact
location the avatar will have when sitting on that chair. In this case, the sit target will be the
location we want to teleport to.

Immediately after the avatar “sits” on the target location, it is detected and forced to stand up
with the function llUnSit, having in this way the effect of an instant teleport.

Figure 3: Floating text over the pins

Figure 4: Floating text over the pins

 Figure 5: Target location and floating text specified on the pin’s script

Figure 6: Code to set target location and floating text

 Figure 7: After teleporting, the avatar

is forced to stand up

3.2. Tour chairs

Located at two corners of the mini-map, two black hemispheres provide the user with three
different guided tour chairs. If one hemisphere is clicked, one dialog box appears giving the
possibility of choosing one tour.

Figure 8: Guided Tours at the mini‐map

Figure 9: Dialog box to choose the Guided Tour Chair

When one option is clicked, the corresponding chair is automatically created besides the
hemisphere. To do this, the three chairs need to be stored in the hemisphere’s inventory with
the script where the interaction is programmed (Figure 1). The function llRezObject is used then
to create the selected chair, which is ready to start the guided tour.

Figure 10: Tour Chairs Distributor’s script

Once the chair has been created, all the user has to do is click on it. The avatar is automatically
sat on the chair and the guided tour starts. Each chair has one script where coordinates,
descriptions and user’s rotations for the different stages of the tour are specified, and the
functions llMoveToTarget and llStopMoveToTarget are used to move from one location to
another.

Figure 11: Locations and rotations specified in the chair’s script

 Figure 12: Function to move between locations

4. INCORE Island: Map Area

This is the main area of the island: the user will find here a Google Map where markers
indicating the memorials modeled in Second Life are displayed. Shared Media, the new feature
introduced with Viewer 2, is used to embed a real Google Map application which is hosted at
CAIN and was built using the Google Map API. Two interactions (events) are supported by the
markers on this Google Map: mouse-over event, i.e., put the mouse over a marker, and click
event, i.e., click on a marker. Each event provides the user with a different level of information
about the corresponding memorial. Five panels to the left of the Google Map display different
information related to the memorial, and the empty area to the right of the map is where the 3D
model is shown.

 Figure 13: Map Area at the INCORE Island

The user has to interact with the Google Map in the same way he interacts with a Google Map
application being displayed in a web browser. An information window appears on the map when
the mouse is over the marker, allowing the user to know which the corresponding memorial is
without further interactions. All this is managed by the Google Map application on the CAIN
server, and the only communication with Second Life happens through Shared Media.

The communication between platforms takes place with the second interaction supported.
When a marker on the map is clicked, the 3D virtual model becomes visible and the Information
Panels change the content to display different material about the memorial. To make this
possible, data from the CAIN server needs to be sent into Second Life and used to modify the
virtual environment.

4.1. Communicating with SL

LSL provides functions that use HTTP for communicating with web servers on the outside
internet, being possible for an in-world object to act as either a client or a server. The choice of
the role depends on who initiates this communication.

Although the interaction in the Map Area is always started by the user on the Second Life side,
this first interaction happens through the Google Map displayed using Shared Media, and it is
interpreted by the server as done using a normal web browser and not from Second Life. As a
response to that action, data will be sent from the CAIN server to the virtual world. This means
that the data is sent in-world without detecting if it was requested from there, initiating then a
new communication process for that purpose. In this scenario, the CAIN server starting the
communication acts as the client, and an in-world object needs to be configured as an HTTP
server.

Figure 14 below shows the high level communication between elements at the Map Area. The
Data Processing Hub is at the core of this and acts as a link between the CAIN server and
Second Life.

 Figure 14: Communication

4.2. The Data Process Hub

This object, invisible to the user, is the central element of the Map Area, and manages the
communication between Second Life and the external server. To work as an HTTP server, the
Data Process Hub needs a url where data can be sent to. It is necessary then to obtain and
send this url to the CAIN server, which is done with a first communication Second Life – CAIN
server where the in-world object acts as a client.

When first saved, and after certain events that invalidates the url, the script in this object calls
the function llRequestURL to request one HTTP:// url for use by this script, which is immediately
sent to the CAIN server with the function llHTTPRequest using the POST request method. A
PHP script on the CAIN server receives and saves that url, which will be used to send data
about the memorials when required.

 Figure 15: URL requested and sent to the external server

 Figure 16: Function to send the URL

 Figure 17: PHP code to receive and

store the URL

Every time a marker on the map is clicked, an HTTP request is built by the Google Map
application with data about the corresponding memorial. This request is sent to a PHP script,
where a socket is created using the URL previously stored to send the data to the virtual world.

Figure 18: Click event for a marker on the Google Map

 Figure 19: Request built by the Google Map application

Figure 20: PHP code to build and send the request to Second Life.

CallLSLScript opens a socket and writes on it

The data sent to that URL is received by the Data Process Hub as an HTTP request, where it is
split into its different fields. Some fields are sent to the corresponding elements of the Map

Area, and one last field is used by the Data Process Hub to load the 3D virtual model of the
memorial.

Once the environment has changed, the avatars on the Map Area are notified of the new
memorial loaded. To do so, a sensor is launched and a Dialog Box with this notification is sent
to the avatars detected.

Figure 21: Data Process Hub’s script. The HTTP request is received and properly managed

4.3. Memorials

A 3D virtual model of a certain memorial becomes visible when its corresponding marker on the
Google Map is clicked. For a script to be able to create objects dynamically, it is necessary that
those objects are stored in the prim’s inventory where the script is, in this case in the Data
Process Hub’s inventory. These objects can be rezzed with the function llRezObject, using the
object’s name.

Each 3D memorial is stored using as the name the id that the corresponding physical memorial
has on the CAIN database. This id is part of the data sent into Second Life by the CAIN server,
and all the Hub’s script has to do is identify that field on the message received and use it with
the function llRezObject to create the correct 3D memorial, sending first a message to remove
the previous memorial with llSay. To be sure that the selected memorial has a 3D replica and
can be rezzed, a list of memorials modelled is checked every time a request is received; in case

the 3D model doesn’t exist in the Hub’s inventory, the user is notified while all the other
infomative content is loaded.

Figure 22: Memorials and script in the Data Process Hub’s inventory

 Figure 23: List of memorials modeled

 Figure 24: The previous memorial is removed and the new one created

Each memorial is responsible for setting its correct position and rotation once it has been
created, and for removing itself when the correct message is received. To do this, each
memorial has its own script specifying this position and rotation and which uses the function
llDie when required.

Figure 25: Memorial’s script. Position is set when created, and the

memorial is removed when the correct message is received

4.4. Info Panels

Four panels to the left of the Google Map display interactive content with information about the
last memorial selected on the map. When a new memorial is selected, the panels change
automatically the content using the information sent by the Data Process Hub, and the user is
notified with this change.

Like the Google Map, these panels use Shared Media to show interactive content from the
internet. Pages from the CAIN web site with different information about the memorial are
displayed by three of these panels, and one last panel embeds Google StreetView with the
correct Point of View (POV). To modify this content dynamically, one script in each object uses
the function llSetPrimMediaParams with the data received from the CAIN server through the

Data Process Hub. Every time a request is receibed by the Hub, new data is sent to the panels
where llSetPrimMediaParam is called and the new content loaded.

Figure 26: Function to set the content on Shared Media

Figure 27: With a new message, this is read and the new content

loaded

